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Abstract: (R)-2-alkyl-1-alkanols (R)-1 with high optical purities were obtained by lipase-ca- 
talyzed esterification of the racemic substrates (Rs)-1 with vinyl acetate in dichloromethane. 
The alcohols (R)-1 were oxidized without racemization to the corresponding carboxylic acids 
(R)-4. The enriched Q-acetates (q-3 either were saponified to the alcohols (Q-1 which are 
substrates for a second lipase-catalyzed transesterification to give (Q-1 in high optical purity 
or were racemized and applied once again in the kinetic resolution to prepare (R)-1. 

Introduction 

Optically active 2-alkyl carboxylic acids as well as the corresponding primary alcohols are important 

intermediates in the synthesis of biologically active compounds and for the preparation of liquid crystals. 

(n-ZMethyl-1-hexanol and (Q-2-methyl-ldecanol, for example, have been used as chiral building blocks 

for the synthesis of the pheromones of the european pine saw fly3 and of the peach leaf miner moth.4 Q-2- 

Methyl pentanoic acid was used for the synthesis of (5’)-4-methyl-3-heptanone, the pheromone of the leaf- 

cutting ant Atta texana.skb (&(+)-Manicone and (S’)-(-)-normanicone, the mandibular gland constituents of 

myrmicine ants, were prepared starting from Q-Zmethyl-1-butano1.k 

For the preparation of chiral ferroelectric liquid crystals, 2-methyl-lcarboxylic acids and the corresponding 

primary alcohols were used in recent times.6 

The first preparations of optically active Zmethyl carboxylic acids were accomplished by classical 

racemate separations with quinine,7 with D- and L-valine,* with (R)- and (!+u-phenylethylamine4b~9 and 

with L-phenylglycinol.10 The optical yields in stereoselective syntheses, using chiral auxiliaries, were gene- 

rally not satisfying for the preparation of optically active 2-methyl carboxylic acids.11 Starting from chiral 

l,Zepoxides, the Eaction with trimethylahuninium leads to optically active 2-methyl-1-alkanols with inver- 

sion of contiguration and optical yields of 83-892 ee.12 

In the last decade, increasing attention has been given to the use of enzymes for the preparation of 

chiral compounds. For the kinetic resolution of racemic secondary alcohols many examples are described in 

the literature.t3 However, this is not the case for primary alcohols. Whereas 3-substituted primary alcohols 

were easily transesterified with methyl propionate. in presence of porcine pancreatic lipase (PPL) with high 

optical yields, the comparable 2-substituted primary alcohols in contrary react very slowly and only with 

poor optical yieldsI 
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During the time this work was in progress, the lipase-catalyzed kinetic resolution of 2-methyl-4-hexen- 

l-01 and other 2-methyl-1-alkanols through transesterification with vinyl acetate was described by E. Santa- 

niello et al.ls Also the kinetic resolution of 2-methyl-2-phenyl-l-alcohols was successfully accomplished by 

lipase-catalyzed transesterifications.16 

The kinetic resolution of 2-alkyl substituted carboxylic acids with lipases so far was not yet successfully 

achieved. This is true for the lipase-catalyzed hydrolysis of 2-methyl carboxylatestoJ5a as well as for the 

enantioselective esterification of racemic carboxylic acidsl7a or the enantioselective acidolysis of racemic 2- 

methyl alkanoates with carboxylic acids.t7b 

The present pubhcation describes the preparation of optically active (R)- and (S)-2-alkyl-1-alkanols 

(R)-1 and Q-l, respectively, by lipase-catalyzed transesterification with vinyl acetate, the oxidation of the 

alcohols (R)-1 to the c&responding carboxylic acids (R)-4 and the racemization of the optically enriched 

alcohols (Q-1. 

Preparation of Optically Pure (RI-2-Alkyl-l-alkanols (RI-1 and (R)_2-Alkyl Carboxylic Acids (R)-4 

Fit we have investigated the lipase-catalyzed hydrolysis of 2-ethyl hexyl esters of various carboxylic 

acids. Although we tried eight commercially available lipases, the conversion rates in all cases were rather 

low and the optical yields of the 2-ethyl-1-hexanol isolated very poor (0 to 38% ee). The highest 

enantioselectivities we p obtained with lipases from Pseudomonas species (PFL from Fluka, Amano P and 

Amano PS from Ama/lo). The variation of the acyl moiety in the ester - acetate, butyrate, isobutyrate, 

capronate and laureate - gave no better conversion rates nor higher optical purities of the obtained 2-ethyl-l- 

hexanol. 

Since the lipase-catalyzed hydrolysis of racemic esters of 2-ethyl- 1-hexanol was not satisfying for the 

preparation of the optically pure alcohol, we have investigated the lipase-catalyzed transesterification of ra- 

cemic 2-alkyl-1-alkanols. From the esters used for transesterifications - trifluoroethyl butyrate, trichloroethyl 

butyrate, vinyl butyrate, trifluoroethyl acetate and vinyl acetate - the vinyl acetate in dichloromethane as sol- 

vent gave the highest bptical yield and comparable rates of conversion like the other esters investigated. 

Therefore we concent@e4l our efforts in the preparation of optically active 2-alkyl-1-alkanols to the trans- 

esteritlcation of racemic 2-alkyl-1-alkanols with vinyl acetate. As solvents for the lipase-catalyzed trans- 

esterifications besides ‘the dichlorometbane we have examined n-hexane, diisopropyl ether, cyclohexane, 

benzene and vinyl acetate. From all applied solvents the highest enantioselectivity with El8 = 6.7 was ob- 

tained with dichlorom+thane in comparison to E = 4.5 for hexane, E = 2.8 for diisopropyl ether, E = 2.2 for 

cyclohexane, E = 1.5 fer benzene and E = 1.7 for vinyl acetate. 
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The lipase-catalyzed resolution of the racemic Zalkyl substituted primary alcohols 1 with vinyl acetate 

2 in dichloromethane yielded the (I+alcohols (R)-1 with optical purities behveen 96-9996 ee by driving the 

extent of conversion between 60 to 80% applying tbe equations for the enantiosekctivity of enzymes for two 

competing enantiomers’3@ (Table 1). 

Lipase 

R 

‘f‘ 

(Amano PS) 
+&c&h 

R 
OH OAC + Rew + CH$HO 

1 - CYCl, il 

R 2 30°C R R 

(W-1 (Sk3 (W-1 

a b c d f g h 

R : C,H, C4Hg C4Hg C&i,, iA H,, - w 

R’ : (2% CH, C2% C% w3 C% w3 ?J 

Table 1. Lipase-Catalyzed Esterification of Racemic 2-Alkyl-1-alkanols (R.s)-1 (0.5 M solution) with Vinyl 

Acetate 2 (2.0 M solution) in Dichloromethane at 30°C 

1 substrates reaction conversion 1 (RI-1 
UL%l time [h] Ew) yield[%] i[%lb) EC) 

a 6 80.2 a 16.8 98 5.9 
b 7.25 74.6 b 22.1 99 8.7 
C 12 74.8 c 22.9 97.5 7.3 
d 5.5 78.0 d 20.5 96.2 5.7 

e 5 67.9 e 28.9 97.9 11.1 
f 5.75 70.0 f 26.0 98.1 9.9 

g 5 63.2 g 32.8 96.1 13.0 
h 4.75 69.0 h 24.8 97.3 9.7 

a) Determined by gas chromatography. - b, Detenuined by capillary gas chromatography after Jones oxidation to the 

corresponding acids (R)4. - ‘) See Ref.13av18 - d’See b) after alkaline hydrolysis and oxidation to (S)-4. 

Q-3 
yield [%I ee [%ld) 

72.4 28.7 
70.3 33.7 
69.1 33.7 
73.9 27.4 
64.3 48.6 
67.7 42.4 
60.6 57.1 
62.2 48.7 

The enantioselectivity E calculated18 with values in a range of E = 5 to 13 depends on the length of the ali- 

phatic chain R in the substrates. E raises with increasing length of R in the series of the Zmethyl substituted 

alkanols la,b,f. 2-Methyl-1-octanol Id, however, deviates with an enantioselectivity of E = 5.7. A double 

bond in the residue R of tbe substrate clearly increases the enantioselectivity compared with the correspon- 

ding saturated alcohol (1a.h and lb,g). A greater enautioselectivity is also achieved with the branched rest R 

(le) in comparison to the unbranched compound lb. 



826 S. BARTH and F. EFFENBERGER 

The ee values of the obtained alcohols (R)-1 were determined by gas chromatography on p-cyclo- 

dextrin phases19 after analytical Jones oxidation according to Sonnet4c*20 to the corresponding (R)- 

carboxylic acids (R)-4. This oxidation proceeds without racemization, which is also confii by our own 

experiments.* 

In collaboration with M. Reuss and M. Indlekofer, *l for the lipase-catalyzed optical resolution of race- 

mic 2-methyl-1-pentanol (R,S’)-la by transesterification with vinyl acetate, a mechanistic model has been de- 

veloped for the double-substrate reaction sequence treating both enantiomers as competing substrates. The 

model is based upon a ping-pong mechanism with alternative substrates involving an acyl-enzyme inter- 

mediate. The model sucaessfully predicts the evolution of the enantiomeric excess of substrate (e+) and the 

degree of conversion with time for batch experiments with various initial concentrations of vinyl acetate and 

(R,S)-la and is in excellent agreement with the definition of the enantioselectivity E proposed by C. J. 

Sih.t3a,ts 

For the preparation of optically active 2-alkyl carboxylic acids 4 in larger amounts the Jones oxidation 

is unsuitable due to various side reactions. ** According to the oxidation of (,I?)-alcohols described in the 

literaturel* the aliphatic (R)-2-alkyl substituted alkanols (R)-la-d,f were oxidized to the corresponding (R)- 

2-alkyl carboxylic acids 4a-d,f in 3 N sulfuric acid with an excess of KMn04 at lo-15°C without race- 

mization. The crude products were purified by column chromatography to give the optically pure carboxylic 

acids (R)-4 in chemical yields comparable to those in Ref. l2 (Table 2). 

KMn04 Rwm - Rv- 
-1 
R 

3 N H,SO, -1 
R 

(W-1 
1 o-1 5°C 

(W-4 

Table 2. Preparative Oxidations of (R)-la-d,f with KMnO4 in 3 N Sulfuric Acid at lo-15°C to the Cor- 

responding Acids (R)-4a-d,f 

(R)-1 ee ("la) HzS04 [ml] (R)-4 yield [%] ee [%la) [alDm (c, CHC13) 

a 94.6 50 a 55.6 94.8 -16.55 (4.20)b) 
b %.7 50 b 69.1 96.4 -18.05 (5.12)b) 

C 93.5 50 C 68.8 92.4 -7.43 (3.62)c) 
d 94.1 40 d 73.3 93.7 -15.60 (4.14)d) 

f 97.5 25 f 68.4 96.5 -14.91 (3.22)e) 

a) Detemined by cap&y gas chromatography on ~-cyclodextrin phases. - b) Refya,l la _ c) Ref.7c.23 _ d) kf.9b 

_e)Ref.llc 
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Preparation of (S)-2-Alkyi-1-alkands (S)-1 with High Optical Purity 

The acetates (Q-3, isolated in the enzyme-catalyzed esterification, were saponified with potassium 

hydroxide in aqueous ethanol to the corresponding (Qalcohols 1 as shown in Table 3 for the compounds 

(S)-3a-d, f. 

R 
OAC 

KOH R ä 
OH 

H,O/EtOH 

w-3 w 1 

Table 3. Preparative Alkaline Hydrolysis of (S’)-3a-d,f with Potassium Hydroxide in Aqueous Ethanol at 

Room Temperature 

substrates reaction products yield eea) blDzo 
(Q-3 time [h] Q-1 WI [%I (c, solvent) 

a 24 a 84.9 26.9 -3.46 (neat) 
b 24 b 88.9 44.4 -5.60 (15.9. diethyl ether) 
C 24 C 92.5 45.8 +1.69 (neat) 
d 24 d 93.4 38.4 -4.79 (12, CH$li) 
f 22 f 91.0 44.7 -4.66 (16, CH2C12) 

a) Determined after Jones oxidation to the acids Q-4 by capillary gas chromatography. 

The optically active (R)-alcohols 1 could be obtained by lipase-catalyzed esterification with conversion 

rates between 60-80% as shown above. Since the lipase favors the (S)-alcohols as substrates in these reac- 

tions, the @)-acetates 3 are formed preferably in chemical yields up to 60-70%. But according to the concept 

for competing enantiomers,‘* with an enantioselectivity of E = 10 only optical purities of approximately 

80% IX for (S)-3 can be achieved even by driving the conversion rate below 10%. 

The @)-acetates or (+S)-alcohols therefore can only be obtained in a higher optical purity by a second lipase- 

catalyzed kinetic resolution with the enriched (S)-alcohols (.S)-1. We were able to prepare the (S)-Zmethyl- 

1-alkanols (S)-la,b,f, which are interesting intermediates in the synthesis of pheromones, by a twofold en- 

zyme-catalyzed esteriflcation with vinyl acetate 2 in optical purities of 91-94% ee and total yields of 13-2346 

referred to the starting racemic alcohols (Table 4). 

In the fiit step, the ($)-acetates 3 were enriched to an optical yield of 63-67% ee by lipase-catalyzed resolu- 

tion of the racemic alcohols (I?,$)-1 with a conversion rate between 40-50%. After purification by column 

chromatography, distillation and alkaline hydrolysis these enriched @)-alcohols were converted in a second 

enzymecatalyzed esteritkation with a degree of conversion between 50-6096 to give O-3 with an optical 

yield of 91-9446 ee, leaving the unreacted (&alcohols with ee values of 17-41%. As shown in Table 4. the 

experimentally obtained enantiomeric excesses of (S)-lf conelate very well with the expected theoretical 

data. lsa 
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Table 4. Twofold Lipase-Catalyzed Esterification of Race&c Alcohols (R,S)-la,b,f with Vinyl Acetate 2 to 

(S)-2-Alkyl Alkanols Q-la,b,f in Dichloromethane at 30°C 

O-3 (R)-I Kvll (W1 
substrate [e&I&] conv. [%I yield [%I ee [%]a) E yield[%] ee [%]b) E yield[%]c) 

(R,S)-la 40.6 a 35.3 66.7 7.7 a 53.7 42.8 6.6 - 

(Q-la [66.7] 49.2 44.4 90.6 - [40.8] - 12.7 

(RS’)-Ib 49.7 b 47.1 63.1 8.2 b 46.8 62.2 8.1 - 

@)-lb [63.1] 51.5 46.3 93.6 - 134.51 - 16.3 
(R.S)-11 49.7 f 45.8 65.9d) 9.4 f 48.5 66.9 10.2 - 

(S’)-lf [65.9] 62.0 58.3 92.ld) - [17.3] - 23.0 

a) After saponification aad Iones oxidation to Q-4. - b, After Jones oxidation to (R)-4. - ‘) Total yield over the sequence (R.S)- 

1~(~-3~~)-1~(~-3~~-1. -d) Theoretical data18a: 67% ee and 93 - 94% ee. 

Racemization of the Ebriched (R)- and (S)-2-Alkyl-1-Alkanols 

In the lipase-catalyzed resolution of the racemic alcohols (R,S)-1 the enriched (.S)-acetates 3 were 

formed in relatively high yields besides the (R)-2-alkyl-1-alkanols. On the other side, the enriched (R)- 

alcohols were obtained as by-products in the preparation of the optically pure @)-alcohols. If only one 

enantiomer is needed, the unwanted enantiomer has to be isomer&d, so that it could be applied again in the 

enzyme-catalyzed resohnion after racemization. The racemization of (S)-2-methyl-1-butanol with catalytic 

amounts of sodium and benzophenone without a solvent has been described in the literature.2A Since the rate 

of racemization strongly depends on the temperature, we have modified the method by using various solvents 

under reflux conditions. 

R 

-AC 
Bmzophenone/ Na R 

OH + 

R’ 
Solvent, Reflux Y OH 

R’ 

w-1 (R,S)-1 

b C f 

R : C,H, C,H, C,z,H,, 

R’ : Cl-$ Cd-6 C&i 

The Q-alkyl alcohols1 1b.c and f were rscemized in toluene within 5 to 6 hours to give the racemic sub- 

strates in approximately 90% yield. However, in heptane, where the reaction temperature is only 12’C lower 

than in toluene, the reaction time is much longer and the yield is lower (Table 5). 
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Table 5. Preparative Racemization of (S)-lb,c,f in Various Solvents in the Presence of Sodium and 

~nzopheno~ (each 5 mol%) 

(9-I ee [%la) solvent time [h] temp. [“c] (R,S)-1 yield[%] ee [%la) 

b 44.4 toluene 6 110 b 86.4 0 

C 45.8 toluene 6 110 c 89.0 0 

e 45.8 heptane 32 98 82.1 0 

f 44.7 toluene 5 110 
F 

92.2 0 

) Determined by capillary gas chmmatogqhy on fi-cyciodextrin phases. 

Experimental 

Muteri& and Methods: The racer& alcohols (R,S)-las were purchased from Aldrich: (R,S)-lb,d-f 

were prepared according to Ref.,zv*k (R,S)-lh to Ref.,26d and (R,S)-lg to Ref.l” Lipase from Pseudomonas 

species (Amano PS, 30 Units/mg). All solvents were purified and dried as described in the literature. Optical 

rotations were performed in a Perkin-Elmer polarimeter 241 LC. Gas chromatography for determination of 

conversions: Hewlett Packard 5700 A with FID, Spectra Physics minigrator, 30 bin nitrogen, glass 

columns 2.3 m x 2 mm, phases OV 17, 101,225. Capillary GC for determination of en~tiom~c excess: a) 

Carlo Erba Fractovap 4160 with FID, Spectra Physics minigrator, 0.4-0.5 bar hydrogen, columns 20 and 50 

m, phase OV 1701 with 10% permethylated &cyclodextrin. b) Carlo Erba MRGC 5300 Mega Series with 

FID, Cur10 Erba Mega Series integrator, 0+4-0.5 bar hydrogen, columns 20 and 50 m, phase OV 1701 with 

10% ~~e~yla~d &cyclodextrin. 

Lipase-catalyzed esterifiation of 2-alkyl-I-alkanols (R,S)-1: 300 Units/mmol 1 of the lipase is given at 

30°C with stirring to a solution of the raccmic alcohol (R,S)-1 (50.0 nunol) and vinyl acetate (0.20 mol) in 

absolute dichloromethane (total volume 100 ml). The conversion was followed by gas chromatography. In 

addition, the enantiomeric excess of the substrate 1 was determined after Jones oxidation of a sample of the 

reaction mixture containing appro~ma~ly 10 pl 1. After the given time (Table 1) the enzyme is filtered off 

and the filtrate is concentrated and chromatographed on silica gel with petroleum ether/ethyl acetate (9:l) 

and after elution of (Q-3 with ethyl acetate. The solvents are removed and the residue is distilled through a 

Vigreux column in vacua to give the optically active alcohols (R)-1.3~4h7b*c*10*15a*x 

(R,s)-1 

g 

a 5.11 
b 5.81 
C 6.51 
d 7.21 
e 6.51 
f 8.62 
g 5.71 
h 5.01 

Wl 
yield g [GsJD~O (c, solvent) 

0.86 +12.10 (neat)7b*& 
1.28 +14.22 (6.96, ether)4a 
1.49 -3.70 (neat)7c26b 
1.48 +11.17 (4.7,CH$@ 
1.88 +12.39 (2.30,CIICl,)26c 
2.24 +9.86 (4.29, CH,CQ3” 
1.87 +2.67 (6.32, CH$la) 1Sa 

1.24 +2.64 (neatYeu 

yield g 

5.22 
5.56 
5.95 
6.89 
5.54 
7.26 
4.73 
4.42 

w-3 
&ID*~ Cc, CH2ct2) 
-0.085 (neat) 

-0.23 (23.2) 

+1.37 (14.5) 
-0.33 (21.0) 
-0.65 (19.5) 
-0.40 (20.6) 

+2.32 (22.8) 
+1.05 (16.8) 
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Elemental analyses data of compounds (R)-1 and Q-3 

w-1 
emp. formula &cd. C H 
(mol. weight) found 

a c6H140 70.53 13.81 
(102.2) 70.51 13.56 

b C7%@ 72.35 13.88 
(116.2) 72.30 13.93 

c CsH1eO 73.78 13.93 
(130.2) 74.02 13.78 

d C,H,O 74.93 13.97 
(144.3) 74.93 14.09 

e C8H180 73.78 13.93 

(130.2) 73.61 13.72 
f ww 76.68 14.04 

(172.3) 76.73 13.90 
g C7H140 73.63 12.36 

(114.2) 73.41 12.35 
h c6%20 71.95 12.08 

(109.2) 71.86 12.07 

(s)-3 
emp. formula C H 
(mol. weight) 

a C8H1602 66.63 11.18 
(144.2) 

b c9H1802 
(158.2) 

c ~loHzOO2 
(172.3) 

d WW’2 
(186.3) 

e C1oH2002 
(172.3) 

f C13H2602 
(214.3) 

g GHl&2 
(156.2) 

b C8H1402 

66.90 10.95 
68.31 11.47 
68.52 11.49 
69.72 11.70 
69.61 11.52 
70.92 11.90 
70.68 11.82 
69.72 11.70 
69.76 11.63 
72.85 12.23 
72.30 11.89 
69.19 10.32 
69.39 10.14 
67.57 9.92 

(142.2) 67.88 10.07 

Preparative oxidation of (R)-1 to the carboxylic acids (R)-4: To the cooled solution of (R)-1 in 3 N 

sulfuric acid (Table 2) the 1.6 fold amount of KMn04 is added in portions so that the temperature does not 

exceed 15°C. The reaction mixture is warmed up to room temperature and stirred for 4 h. The manganese 

dioxide formed is dissolved with NaHS03 and the mixture is extracted three times with 100 ml diethyl ether. 

The combined ether phases are extracted with 10% sodium hydroxide solution. With cooling the extract is 

acidified with 10% HC1 and extracted three times with 100 ml diethyl ether, The combined extracts are dried 

with MgS04, concentdated and the residue is chromatographed on silica gel with petroleum ether/ethyl 

acetate (1 :l) to give the (R)-acids 4a-f.7a*c9b*1 lac 

elemental analyses 

:R)-1 KMn04 (R)-4 emp. formula calcd. C H 

g (nunon g (mmol) yield g (mol. weight) found 

a 1.02 (10.10) 2.53 (16.0) a 0.65 C6H1202 62.04 10.41 

(116.2) 61.84 10.37 

b 1.16 (10.10) 2.53 (16.0) b 0.90 C7H1402 64.58 10.84 
(130.2) 64.42 10.94 

C 1.30 (10.0) 2.53 (16.0) c 0.99 C8HlC@2 66.63 11.18 

(144.2) 66.41 11.20 

d 1.15 (8.a) 2.02 (12.8) d 0.93 qH1802 68.31 11.47 

(158.2) 68.49 11.38 
f 0.86 (5.U) 1.26 (8.0) f 0.64 ‘G&202 70.92 11.90 

(186.3) 71.13 11.98 
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Sapon~@ztion ofthe acetates (Sj-3 to the alcohols (Q-1: (Q-3 is stirred in aqueous ethanol for 24 h at 

room temperature with the 1.5 fold amount of potassium hydroxide. ‘Ihe solvent is removed and the residue 

is diluted with 50 - 100 ml water and extracted twice with 250 ml diethyl ether. The extracts are washed with 

20 - 50 ml water, dried with MgS04, concentrated and the product is distilled through a Vigreux column. 

(03 g (mmol) KOH g (mmol) ethanol&O (ml) O-1 yield g 

a 14.42 (100.0) 8.41 (150.0) 150/20 a 8.68 
b 15.82 (109.0) 8.41 (150.0) 150/20 b 10.34 
C 17.22 (100.0) 8.41 (150.0) 150/20 C 12.05 
d 9.31 (50.0) 4.21 (75.0) 75J20 d 6.74 
f 5.35 (25.0) 2.10 (37.5) 50110 f 3.92 

Preparation of (S)-alcohols (S)-13Aa*26a . an high optical purity by twofold resolution: The lipase-cata- 

lyzed esterification, work-up and saponification were carried out as described above. The conversion was 

followed by lH NMR spectroscopy. 

substrate 2 lipase CHzCl2 time 
.8 (mol) g (mol) [U/mm01 l] ml ihI 
(R.S)-la 
102.2 (1.0) 172.2 (2.0) 75 1000 7.5 

(SW 
30.6 (0.3) 51.6 (0.6) 150 300 5 

UW-lb 
11.3 (0.1) 34.4 (0.4) 300 200 2.25 

Q-lb 

Q-3 bWJ 
yield g (c,CH,Cl~ 

50.9 - 
-0.66 

19.2 (10.1) 

7.4 - 
-1.25 

2.9 (0.025) 8.6 (0.1) 150 50 3.25 1 1.8 (3.20) 

(RSW I 
8.6 (0.05) 17.2 (0.2) 300 100 2.5 4.9 - 
WI-If -1.55 
1.7 (0.01) 3.4 (0.04) 300 20 2.5 1.2 (3.35) 

a) By saponification of the isolated acetates (S)3. 

@)-la) (Rkl Q-l 
yield g (%) yield g ee [%I 

32.4 
(89.8) 54.9 - 
12.3 not isol. 

(90.3) - 40.8 
4.7 

(87.5) 5.44 - 
1.1 not isol. 

(85.6) - 34.5 
3.7 

(93.4) 4.2 - 
0.8 not isol. 

(89.4) - 17.3 

Preparative racemization of (S)-l: o-1 is given to a solution of sodium and benxophenone in toluene 

or heptane and then the reaction mixture is &htxed. After the given time (Table 5) 50 ml water are added 

and the mixture is extracted three times with 100 ml diethyl ether. The combined extracts arc washed with 50 

ml water and dried with MgSO4. The solvents are removed and the racemic alcohol (R&l is distilled 

through a Vigteux column in vacua. 

O-1 sodium benzophenone solvents (R,S)-1 
g (mmol) mg (mol%) mg (mol%) W) yield g 

b 2.32 (20.0) 23.0 (5.0) 182.2 (5.0 ) toluene (40) b 2.01 
c 2.60 (20.0) 23.0 (5.0) 182.2 (5.0) toluene (40) c 2.32 
c 1.30 (10.0) 11.5 (5.0) 91.1 (5.0) heptane (20) c 1.07 
f 1.72 (10.0) 11.5 (5.0) 91.1 (5.0) toluene (20) f 1.59 
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Anafytical determination of the enantiomeric excess (ee): The Jones reagent is prepared from 10.0 g 

CrG3 and 10 ml cont. sulfuric acid, mfiied with water to 40 ml total volume (2.5 M CtO$. 

a) 10 pl of the alcoholi 1 (either the pure product or in the reaction mixture) am dissolved in 2 ml acetone and 

treated with cooling with 60 pl Jones reagent. After 10 min the reaction mixture is diluted with 5 ml water 

and extracted with 5 ml dietbyl ether. The ether solution is extracted with 2 ml 10% sodium hydroxide 

solution. The aqueous phase is acidified with cooling with 10% HCI and then extracted with 5 ml diethyl 

ether. The extract is f&red through a small silica gel column and the enantiomeric excess of 4 is determined 

from the filtrate by capillary gas chromatography on OV 1701 phases with 10% permethylatcd pCyclodex- 

trin (column 50 m). 

b) 100 pl Q-3 in 2 mIof a 2 M solution of KOH in 90% ethanol are allowed to stand at room temperature 

for 18 h. Then the mixture is diluted with 5 ml water, extracted with 20 ml diethyl ether and the organic pha- 

se is concentrated. The crude @)-alcohols arc treated as described in a). 
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